Multiplexed LC/ESI-MRM-MS-based Assay for Identification of Coronary Artery Disease Biomarkers in Human Plasma

Journal: Clinical Applications

Manuscript ID prca.201700111.R1

Wiley - Manuscript type: Research Article

Date Submitted by the Author: 16-Aug-2018

Complete List of Authors: Anwar, Mohammad; Molecular You Corporation
Dai, Liying; NCE CECR PROOF Centre of Excellence
Wilson-McManus, Janet; NCE CECR PROOF Centre of Excellence
Smith, Derek; University of Victoria - Genome BC Proteomics Centre
Francis, Gordon; University of British Columbia, Department of Medicine;
Providence Heart and Lung Institute and the James Hogg Research Center,
St. Paul's Hospital
Borchers, Christoph; University of Victoria - Genome BC Proteomics Centre,
; University of Victoria, Biochemistry & Microbiology
McManus, Bruce; University of British Columbia, Department of Pathology and Laboratory Medicine; NCE CECR PROOF Centre of Excellence
Hill, John; University of British Columbia, Department of Pathology and Laboratory Medicine; Providence Heart and Lung Institute and the James Hogg Research Center, St. Paul’s Hospital
Cohen-Freue, Gabriela; University of British Columbia, Department of Statistics

Keywords: proteomic classifier, Coronary artery disease
Multiplexed LC/ESI-MRM-MS-based Assay for Identification of Coronary Artery Disease Biomarkers in Human Plasma

Mohammad A Anwar*1, Darlene Liying Dai*2, Janet Wilson-McManus3, Derek Smith3, Gordon A. Francis4,5, Christoph H Borchers3,6, Bruce M. McManus2,7, John S. Hill3,7, Gabriela V. Cohen Freue2,8

1Molecular You Corporation, Vancouver, British Columbia, Canada; 2NCE CECR PROOF Centre of Excellence, Vancouver, British Columbia, Canada; 3Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada; 4Providence Heart and Lung Institute and the James Hogg Research Center, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada; 5Department of Medicine, University of British Columbia, Vancouver, BC, Canada; 6Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; 7Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 8Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada. *equal contributors

Correspondence should be addressed to: Dr. Gabriela V. Cohen Freue, Assistant Professor, ESB 3146-2329 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4. Tel: 604-822-3710 Email: gcohen@stat.ubc.ca

A2AP Alpha 2-antiplasmin FV Coagulation factor V
ApoCII Apolipoprotein C II FX Coagulation factor X
ApoL1 Apolipoprotein L1 LDL Low density lipoprotein
C3 Complement C3 MAC Membrane attack complex
CAD Coronary artery disease PON1 Paraoxonase 1
CD5L CD5 antigen-like SHBG Sex hormone binding
CIQA Complement C1q subcomponent subunit A vWF von Willebrand factor
CRP C-reactive protein

Keywords: Proteomics, Biomarkers, Coronary artery disease, MRM-MS, Classification

Total number of words: 9568
Statement of clinical relevance

Coronary artery disease (CAD) is the most common form of heart disease and occurs when arteries in the heart become blocked. If left untreated, CAD can lead to other serious problems such as angina, heart attack, stroke, and death. Currently, CAD is one of the most common causes of mortality in the developed world and has an estimated economic burden of more than $170 billion per year and increasing. Therefore, accurate diagnosis, rapid testing, and risk management strategies is critical in reducing the morbidity, mortality, and socioeconomic burden of this disease. Although many potential circulating biomarkers have been elucidated and aid in the diagnosis of CAD pathogenesis, their rapid and reproducible measurement is required before they can be considered for routine use in risk evaluation for CAD. Our study illustrates the potential of using an accurate and reproducible LC/ESI-MRM-MS assay to identify promising biomarkers of CAD and may be used as a robust and accurate clinical tool for diagnosis and risk stratification.
Abstract

Purpose: A highly-multiplexed LC/ESI-MRM-MS based assay was developed for accurate and reproducible identification of coronary artery disease (CAD) biomarkers in human plasma. Experimental design: The assay was used to measure 242 stable isotope labeled peptide standards and native peptides from 100 putative biomarkers of cardiovascular diseases in tryptic digests of plasma from subjects with (n=70) and without (n=45) angiographic evidence of CAD and no subsequent cardiovascular mortality during follow-up. Results: Extensive computational and statistical analysis revealed 16 plasma proteins associated with CAD, namely alpha 2-antiplasmin, apolipoprotein CII, apolipoprotein L1, C reactive protein, CD5 antigen-like, coagulation factor V, coagulation factor X, complement C3, complement C1q subcomponent subunit A, fibronectin, inter alpha trypsin inhibitor heavy chain H1, paraoxonase, protein S, sex hormone binding globulin, transferrin, and von Willebrand factor. The identified proteins were combined into a logistic regression with high classification performance (cross-validated AUC=0.75). When combined with a separate score computed from markers currently used in the clinic with similar performance, the AUC increased to 0.84. Similar results were observed in an independent set of subjects (n=87). Conclusions and clinical relevance: If externally validated, the assay and identified biomarkers can improve CAD risk stratification.
Introduction

Coronary artery disease (CAD) is one of the most common causes of death for both men and women in the developed world, responsible for approximately 1 in every 4 deaths [1]. CAD is estimated to affect about 17 million people in the United States and 1.6 million people in Canada [1-3]. The estimated direct and indirect economic burden of CAD in North America is more than $170 billion per year [1]. The significant morbidity, mortality, and socioeconomic importance of this disease make timely accurate diagnosis and cost-effective prevention and management of CAD of the utmost importance.

CAD pathogenesis occurs when plaque builds up on the inner arterial walls [4] blocking the flow of oxygenated blood through the arteries to the heart muscle. This partial obstruction can lead to chest pain (angina) or a heart attack. Most heart attacks happen when a blood clot associated with plaque suddenly cuts off the hearts' blood supply, causing permanent heart damage. Over time, without intervention, CAD can also weaken the heart muscle and contribute to heart failure [4]. Chronic stable angina, the initial diagnostic manifestation of CAD, is only evident in approximately 50% of all subjects [5]. Other cases of CAD remain asymptomatic or present anginal “equivalents” symptoms, such as epigastric discomfort, dyspnea, fatigue, or faintness. Coronary angiography must be performed as quickly as possible in high-risk subjects with CAD. To date, there is still an unmet clinical need to enhance our current risk stratification based mainly on classic risk factors of CAD including family history, age, hyperlipidemia, hypertension, smoking, obesity and diabetes, and to determine who among an at-risk population has developed clinical CAD.
Although many potential circulating biomarkers may aid in diagnosis of CAD, their rapid and reproducible measurement is required before they can be considered for routine use in risk evaluation for CAD [6, 7]. Recent developments in quantitative proteomics technologies have enabled the identification of potential biomarkers of various diseases and conditions [8, 9]. In particular, liquid chromatography-electrospray ionization-multiple reaction monitoring mass spectrometry (LC/ESI-MRM-MS) is a highly sensitive and reproducible method for the targeted quantitation of protein/peptide abundance over a wide dynamic range of protein concentrations in complex biological samples [10]. Since many of the potential CAD proteomic biomarkers are circulating plasma proteins, LC/ESI-MRM-MS results in a reliable multiplex proteomics platform for this discovery study. Although LC/ESI-MRM-MS is commonly used for the quantification of small molecules in pharmaceutical, clinical, and environmental applications [10-12], its use in discovery studies remains limited because of the requirement that the peptide targets be known in advance.

We used a large set of 100 potential protein biomarkers of cardiovascular diseases to develop an accurate and reproducible discovery multiplexed LC/ESI-MRM-MS assay. Protein levels were then measured in 202 plasma samples from a cohort of subjects who underwent coronary angiography for suspected CAD. Based on our LC/ESI-MRM-MS platform results and data analysis, we identified a panel of 16 plasma proteins and combined them into a logistic regression score with high classification performance (cross-validated AUC=0.75, and a sensitivity and specificity of 74% and 55%, respectively on an independent test set). A second classifier was built from markers routinely used in the clinic, which showed similar performance in our cohort of subjects (cross-validated AUC=0.76, test sensitivity and specificity of 77% and
36%, respectively). Interestingly, a classifier based on the average of both classifiers’ probabilities (ensemble classifier [13]) increased the cross-validated AUC to 0.84.

The results of this study are a solid first step toward the use of multiplexed LC/ESI-MRM-MS assays in proteomic discovery studies, and for the development of a robust and accurate tool to determine who, among an at-risk population, has developed clinical CAD.

Materials and Methods

Study Population and Study Design

The subjects for this study were derived from the Vancouver Coronary Angiography Cohort, which has previously been described in detail [14-16]. All subjects provided signed consent forms. This study was approved by the Research Ethics Board of St. Paul’s Hospital, Vancouver, Canada. Briefly, the cohort was comprised of men and women who were referred to two major teaching hospitals in Vancouver for selective coronary angiography between 1992 and 1995. Clinical indications for angiography included stable angina, previous myocardial infarction, aortic valve disease, and mitral valve regurgitation. Subjects with unstable angina or myocardial infarction within the preceding 2 months were excluded from the study. CAD presence was defined by the presence of any lesion causing ≥20% (diameter reduction) stenosis, while severe CAD was defined by the presence of any lesion causing ≥50% stenosis, as semi-quantitatively visualized in major myocardial blood vessels (rounded to the nearest 10% stenosis). The subjects were followed passively until November 2007. During the follow-up period, deaths related to a cardiovascular disease were determined using the World Health Organization International Classification of Disease-10th revision mortality codes I20–I25 and I60–I69.

A case-control design was used to identify a panel of proteomic markers of CAD by
comparing plasma samples from 70 subjects who had angiographic evidence of CAD (case, CAD+) with samples from 45 subjects who had no angiographic evidence of CAD (control, CAD-). To control for confounding factors, samples from the case and the control groups in the discovery set were approximately matched according to age and gender, and otherwise randomly selected from the subset of subjects who did not die from a cardiovascular disease within the follow-up period. A set of 87 additional subjects who were not included in the discovery cohort was used as an independent test set for initial validation of the results of this study. Most of the samples in this set correspond to subjects with angiographic evidence of CAD, who died from a cardiovascular disease within the follow-up period (CAD+CVD+, n=73). The other 14 samples in the test set correspond to CAD+ (n=3) and CAD- subjects (n=11) who did not die within the follow-up period (CVD-) but could not be matched with samples in the discovery cohort.

Clinical Data and Plasma Sample Collection

Information on demographics, history of cardiovascular disease, diabetes, hypertension, smoking, and renal insufficiency in the patient and the patient’s family was obtained from a detailed questionnaire administrated to every patient by a nurse or cardiologist at the time of the angiography. Body mass index (BMI) was calculated from each subject’s weight and height. Waist circumference and blood pressure were also measured.

Before angiography, a fasting blood sample was collected from a vein in the antecubital fossa in EDTA (ethylenediamine tetra-acetate) Vacutainer tubes (Becton Dickinson, Franklin Lakes, New Jersey) [14-16]. Plasma lipid levels and apolipoprotein B levels were immediately determined as previously described [14-16]. Blood samples were centrifuged immediately and aliquoted into smaller vials and frozen in –70 °C until analysis. Plasma samples for the LC/ESI-
MRM-MS analysis were sent in 2011 to the University of Victoria (UVic) Genome BC Proteomics Centre (Victoria, BC, Canada).

Synthesis and Purification of Isotopically Labeled Standard Peptides

All reagents were American Chemical Safety (ACS) grade or higher. All solvents used, including water, were LC/MS grade. For this study, a total of 242 targeted peptides corresponding to 100 unique proteins (mostly involved in immunity, inflammation, coagulation, and cardiovascular disease) were selected from the relevant literature (Table A1 in the Supplementary Material). Isotopically labeled peptide standards were synthesized as previously described [17]. Briefly, Fmoc (N-(9-fluorenyl) methoxycarbonyl) chemistry was performed on a Protein Technologies Prelude peptide synthesizer (Tucson, AZ), using isotopically labeled amino acids, $^{[13}C_6,^{15}N_2$] or $^{[13}C_6$]-Lys (98% isotopic enrichment) and $^{[13}C_6,^{15}N_4$] or $^{[13}C_6$]-Arg (98% isotopic enrichment) which were purchased from Cambridge Isotope Laboratories (Andover, MA). The synthetic peptides were dried and precipitated with ether. Peptides were purified by reversed-phase HPLC (Ultimate 3000, Dionex, Thermo Scientific, Sunnyvale, CA) while monitoring the peptide elution at 230 nm. Fractions containing > 80% of the target peptide by MALDI-TOF analysis were combined and lyophilized. The peptides were then acid hydrolyzed, and the purity was determined by amino acid analysis Capillary Zone Electrophoresis (CZE) using a P/ACE™ MDQ System (Beckman Coulter, Fullerton, CA) [17]. The absolute concentrations of the synthetic peptides, as determined by amino acid analysis, were adjusted by the percent purity of each synthetic peptide as determined by CZE. This corrects for any possible contribution from incorrect or partial synthesis products.
Preparation of Plasma Tryptic Digests and Addition of Internal Standard Peptides

All sample manipulations including in-solution digestion, stable-isotope-labeled standard (SIS) peptide addition, and solid phase extraction (SPE) cleanup steps were performed using a Tecan Freedom Evo150 liquid-handling robot (Männedorf, Switzerland). In each case, plasma samples were thawed and kept at 4°C. A single “standard plasma” sample was created by mixing six 20-µL samples from each group. This standard sample was added to each plate for the generation of a 6-point standard curve covering a 30-fold concentration range. Samples were mixed by vortexing for 10 sec, and centrifuged at 4°C for 5 min at 2,000×g. The samples were diluted 1/10 by transferring 8 µL of each sample into 72 µL of 25 mM ammonium bicarbonate in a polypropylene PCR microtitre plate and kept at 4°C, and 30 µL of each diluted plasma sample was denatured and diluted by transferring it to a deep well (1.6 mL) microtitre plate containing 30 µL of 10% w/v sodium deoxycholate (NaDOC) and 174.5 µL of 25 mM ammonium bicarbonate. Disulphide bonds were reduced by the addition of 26.1 µL of 50 mM tris(2-carboxyethyl)phosphine (TCEP, in 25 mM ammonium bicarbonate) (5 mM final concentration) and incubating at 60°C for 30 min in a dry-air incubator. Free sulfhydryl groups were alkylated by the addition of 29.0 µL of 100 mM iodoacetamide (in 25 mM ammonium bicarbonate) (10 mM final concentration) and incubating at 37°C for 30 min in a dry-air incubator. The remaining iodoacetamide was quenched by addition of 29.0 µL of 100 mM DTT (in 25 mM ammonium bicarbonate) (10 mM final concentration) and incubating at 37°C for 30 min in a dry-air incubator. 10.5 µL of TPCK-treated trypsin (0.8 µg/µL, Worthington, in 25 mM ammonium bicarbonate) was added to each sample and the final volume of each digest was 329 µL, and digestion was conducted at 37°C for 16 hours in a dry air incubator.
Digestion was quenched by the addition of an acidified SIS peptide mixture (in formic acid) to give a final formic acid concentration of 0.5% v/v. This lowers the pH to <3, which inactivates trypsin, and precipitates sodium deoxycholate. Samples were then centrifuged for 10 min at 2000 × g (23°C) to pellet the sodium deoxycholate (NaDOC) precipitate. The sample supernatant was desalted and concentrated by solid phase extraction using a Waters Oasis HLB μElution plate (2 mg) for the 85 sample analyses or Waters Oasis HLB 1 cc (10 mg) cartridges (Waters, Milford, MA). Briefly, the resin was rinsed with methanol and equilibrated with water. The sample was loaded and washed with water, and eluted in 50% ACN (0.1% formic acid). Eluted samples were frozen and lyophilized to dryness overnight. Prior to LC/ESI-MRM-MS analysis, samples were rehydrated in a volume of 0.1% v/v formic acid (mobile phase A) corresponding to a 1/70 dilution of plasma (1 µg/µL, based on an initial plasma–protein concentration of 70 mg/mL).

LC/ESI-MRM/MS Analysis of Plasma Digests

An Agilent 1290 Infinity UHPLC system was used to directly inject 10 µL of desalted plasma digest samples (10 µg, representing 143 nL of raw plasma) onto a reversed phase analytical column (150 mm × 2.1 mm i.d., Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HD column, 1.8 µm particle size) that was maintained at a column temperature of 50°C. Samples were then separated using a flow rate of 400 µL/min with a 2-min linear gradient from 3 to 13% solvent B, then a 15-min linear gradient from 13 to 19% solvent B (90% v/v acetonitrile, 0.1% v/v formic acid), followed by a 6-min linear gradient from 19 to 27% solvent B, then a 3-min linear gradient from 27 to 43% solvent B, and finally a 2-min linear gradient from 43 to 90% solvent B. The analytical column is then reconditioned by holding solvent B at 90% for 4 min prior to ramping back down to 3% solvent B, and re-equilibrating the column for 4 min with 3%
solvent B. A blank, solvent injection (20 min analyses at 500 µL/min) was analyzed between all samples to reduce sample carryover on the HPLC column.

An Agilent 6490 Triple Quadruple MS with a high-flow iFunnel technology ionization source, controlled by Agilent's MassHunter Workstation software (version B.04.01), was used for all LC/ESI-MRM-MS sample analyses. All acquisition methods used the following parameters: 3500 V capillary voltage, a sheath gas flow of 11 L/min. (UHP nitrogen), a 200°C sheath gas temperature, an MS operating pressure of 5.08 × 10-5 Torr, and Q1 and Q3 set to unit resolution.

MRM acquisition methods were constructed using 3 ion pairs per peptide with fragment ion specific tuned CE voltages and retention time constraints. A default 380 V fragmentor voltage and 5 V cell accelerator potential were used for all MRM ion pairs, and the dynamic MRM option was used for all data acquisition with a target cycle time of 1 second and a 0.9 min MRM detection window.

LC/ESI-MRM-MS Data Analysis

All LC/ESI-MRM-MS data was processed using Agilent MassHunter Quantitative Analysis software (Agilent B.04.00) with the Agilent Integrator algorithm for peak integration set with default values. All integrated peaks were manually inspected to ensure correct peak detection and accurate integration. Linear regression of all calibration curves was performed using a standard 1/x2 (x = concentration) weighting option to aid in covering a wide dynamic range [18]. All peptides were initially targeted using 3 MRM ion pairs per peptide to verify retention times and ensure absence of any signal interference. The multiple ion-pair signals for each peptide were compared to detect the presence of interferences by ensuring that the relative signal intensity of ion pairs was consistent between the heavy and natural forms of all peptides. Calculated
concentrations were derived from the quantifier MRM transition, with two qualifier transitions acting to verify retention times and reveal any signal interference. Qualifier ion pairs were used to detect the presence of interferences by ensuring that the relative signal intensity of ion pairs was consistent between the heavy and endogenous forms of all peptides. We have aimed for a minimum of 10 points across a peak and each peptide was measured with 3 transitions. Qualifier and quantifier transitions are reported as a Supplementary File.

The quality of the linear regression curve is a good indicator of the quality of the data for the specific target. The accuracy of each standard point was calculated based on the determined linear regression curve and should be between 80-120%. Low signal standard points, such as Std. A, are more likely to have accuracies outside this range and were sometimes excluded from the linear regression curve. Most standard points should be within the 80-120% accuracy range for a reliable determination of target concentration.

Relative target responses are reported as Area Ratio (RR: relative response), which is the ratio of the integrated area of the endogenous (natural) peak to the integrated area of the corresponding standard (SIS) peptide. Relative responses were used in subsequent statistical analyses to ease the comparison of samples processed in different batches.

Statistical Analyses

We performed an extensive quality control of the LC/ESI-MRM-MS data as previously described [19]. To control the quality of our data, we have examined the accuracies of the standards points and the limit of quantification of the endogenous targets. Peptides with overall low accuracy and/or values below the limit of quantitation or not measured in more than 50% of
the samples were eliminated from this analysis (see Table A1c in the Supplementary Material). The relative responses were log-transformed (base 2).

For any protein containing missing values (i.e., peptides undetected in certain samples), if another peptide is available and measured for that protein, then its value is used to impute the missing value. Otherwise, half of the minimum value observed throughout the assay is used to impute. This approach reduces the repetition of a single value in multiple samples introduced by imputation.

For proteins measured with multiple peptides, the reported protein level was based on the peptide with the highest intensity in the majority of the samples analyzed. Results in this study are robust to using the average level among all available peptides (see Supplementary Material). Proteins with very small variation across the majority of the samples in the discovery set were not analyzed. Results of the quality control process and the list of selected peptides for each protein are shown in Table A1 in the Supplementary Material. All remaining protein values were standardized to have a mean level of 0 and standard deviation of 1 for subsequent statistical analyses.

Differences in protein levels between CAD(+) and CAD(-) groups of the remaining proteins were tested using a Student’s t-test. Protein levels of significant proteins (un-adjusted p-values < 0.05) were combined into a protein classifier probability score using logistic regression. The logistic regression model is a linear combination of the explanatory variables (e.g., protein levels) to explain and predict the probability of positive CAD. Similarly, traditional clinical markers (Table 1) were used to build a logistic regression and predict the probability of positive CAD. While the statistical significance of each marker is relevant to identify potential markers, it
is important to note that it may not affect the prediction performance when all markers are combined in the logistic model (see Shmueli G. (2010) for a full discussion on this topic [20]). In addition, the combination of several markers can achieve a performance superior to that of individual features (see Figure A2 in the Supplementary Material). Since our study is focused on the joint contribution of proteins and clinical features to predict CAD classes, we have not adjusted the p-values of the univariate tests for multiple comparison testing. Both classifiers were combined taking the average of the proteomics-MRM and the clinical estimated probabilities to build a third classifier (ensemble classifier) [13].

In the absence of an external test cohort and considering the special characteristics of the 87 samples left aside as a test set, the three classifiers were first evaluated using 100 runs of 5-fold stratified cross-validations. In each cross-validation run, the case and the control groups were randomly split into 5 sets (a.k.a. folds). One fold from each group was left out to form a test set. The remaining samples were combined into a training set to build the classifiers and predict the probability that the samples left out correspond to subjects with CAD. The test set that was left out was not used to identify the proteins in the biomarker panel or build the logistic regression classifiers. The predicted probabilities of each classifier were pooled to estimate each area under the receiver operating curve (AUC). Similarly, we estimated the sensitivity and specificity of the classifiers using a cut-off probability equal to 0.5. The receiver operating characteristic curve (ROC) was used to illustrate these measures at other cut-off points. Since the performance of the classifiers depends on the random assignment of samples into training and test sets, the process was repeated 100 times and the performance measures obtained from all runs were averaged for each classifier. The statistical analysis in this study was performed using
the software R (www.r-project.org) and Bioconductor (www.bioconductor.org). The AUC and ROC were estimated using the ROCR [21] and cvAUC [22] packages.

Results

Cohort Clinical Characteristics

A set of 70 case subjects with angiographic evidence of CAD (CAD+), and 45 control subjects without angiographic evidence of CAD (CAD-) were selected from the Vancouver Coronary Angiography Cohort (Table 1) for proteomic-based biomarker discovery using the LC/ESI-MRM-MS assay developed for this study. Some of the traditional clinical markers of CAD, including body mass index (BMI), waist circumference, high-density lipoprotein cholesterol (HDL-C), ratio of total cholesterol to HDL-C, previous incidence of diabetes, and previous history of cardiovascular problems were significantly different between our CAD+ and CAD- groups (Table 1). Since samples in both groups were approximately matched according to age (61.96 ± 3.21 and 61.47 ± 1.41 years of age for the CAD- and the CAD+ groups, respectively, t-test p-value equal to 0.3) and gender (80% and 84% of male in the CAD- and CAD+ groups, respectively, Pearson's chi-squared test p-value equal to 0.7), these variables were not included in the analysis of traditional clinical risk factors. Similarly, the majority of subjects in this study were Caucasian so we did not analyze the association of ethnicity with CAD. The prevalence of diabetes is higher in the CAD group. Thus, we also used the classifiers developed in this study to classify only those samples without diabetes (n=97 from the discovery set) to address any potential confounding effect. Results demonstrate that the performances of the three classifiers developed in this study remain almost unchanged when evaluated on this subset of patients without diabetes (see the Supplementary Material for more details).
LC/ESI-MRM-MS Assay for Biomarkers Discovery

We developed a proteomic LC/ESI-MRM-MS assay to measure a comprehensive list of putative CAD peptides on these samples. Table A1 in the Supplementary Material lists all the putative proteins and their corresponding peptide sequence(s) measured with the tailored LC/ESI-MRM-MS assay designed in this study. A detailed description of part of the assay has been previously given by our group [23]. Among the 242 measured peptides, we analyzed a total of 122 peptides, corresponding to 66 proteins, which passed the quality controls and were present in more than 50% of the discovery samples (see Table A1 in the Supplementary Material). The correlation between peptides levels from the same protein varies in the set of analyzed proteins with a median correlation of 0.94. The peptide with highest intensity in the majority of the analyzed samples was used to estimate the levels of proteins measured with multiple peptides (identified in Table A1 in the Supplementary Material).

A total of 16 proteins had a biologically and statistically significant differential abundance between subjects with and without CAD (t-test un-adjusted p-value < 0.05, Table 2), and were used to build a logistic regression classifier. Figure 1 illustrates the protein levels of this discovery panel. Alpha 2 antiplasmin (A2AP), apolipoprotein CII (ApoCII), apolipoprotein L1 (ApoL1), C reactive protein (CRP), CD5 antigen-like (CD5L), coagulation factor V (F5), coagulation factor X (F10), complement C3 (C3), complement C1q subcomponent subunit A (C1QA), inter alpha trypsin inhibitor heavy chain H1 (ITIH1), paraoxonase (PON1), protein S (PROTS), and transferrin (TF) are, on average, more abundant in CAD+ subjects compared to CAD- subjects. Fibronectin (FN1), von Willebrand factor (vWF) and sex hormone binding globulin (SHBG) are, on average, less abundant in CAD+ subjects compared to CAD- subjects.
Figure 2 shows the pairwise correlations of all peptide levels from these 16 proteins in the discovery panel. A cluster analysis of these proteins is given in Figure A3 of the Supplementary Material. As expected, multiple peptides from the same protein tend to be highly correlated compared to peptides from other proteins (dark blue blocks across the diagonal line). Although for some proteins the correlation between some peptides is low (e.g., the correlation between SQHLDNFNSQIGK and LSEGASYLDHTFPAEK of coagulation factor V is 0.28, represented by a light blue in Figure 2), in general, all proteins have at least one pair of highly correlated peptides. The median of the minimum pairwise correlation between peptides of the same protein is 0.74; the median of the maximum pairwise correlation between peptides of the same protein is 0.77. Not surprisingly, we also observed a number of large correlations among distinct proteins, illustrating potential biological relationships among proteins in the human plasma proteome.

The 16 identified proteins were combined into a single logistic regression probability score that can be used to classify samples into CAD positive or negative groups. The classifier score is a function of the identified markers that estimates the probability that a subject suffers from CAD (see Materials and Methods for more details). Figure A4-a in the Supplementary Material illustrates the aggregate protein probability score for all samples in the discovery cohort. Figure 3-a shows the receiver operating characteristic curves (ROC) from all cross-validation runs (in light grey) and its average curve (solid blue line) to illustrate the performance of our methodology to classify new samples. Figure A5 in the Supplementary Material illustrates the distribution of the AUCs across the 100 runs using boxplots. Based on these initial results, the identified candidate markers together can predict CAD with a cross-validated sensitivity of 77%, a specificity of 60% and an overall AUC of 0.75 (see Figure 3-a). The estimated sensitivity and specificity in the independent test set, mainly composed of subjects with CAD that died during
the followed-up period, was 74% and 55%, respectively.

Combining the LC/ESI-MRM-MS Results with Clinical Data

Using the same methodology we built a logistic regression model based on traditional clinical markers of CAD (see Table 1). Figure A4-b in the Supplementary Material illustrates the aggregate protein probability score for all samples in the discovery cohort. The resulting classifier has a performance similar to the proteomics-MRM classifier, with a cross-validated AUC of 0.76, a sensitivity of 80% and a specificity of 57% (Figure 3-b and Figure A5). Similarly, this clinical classifier has a sensitivity of 77% and a specificity of 36% in the test set.

Using the proteomics-MRM and the clinical classifiers, we built an ensemble classifier taking the average of their probabilities (see Figure A4-c). Interestingly, the resulting combined classifier has an improved cross-validated AUC of 0.84, a sensitivity of 86% and a specificity of 64% (see Figure 3-c and Figure A5). The sensitivity of the ensemble classifier also increased in the test set to 86% compared to that of the clinical and the proteomics-MRM classifiers, and the specificity equals that of the clinical classifier (36%).

Discussion

Conservative predictions of mortality from CAD are projected to reach 23.4 million people in North America by 2030 [1]. The importance of biomarkers in both diagnosing and determining the prognosis for CAD is well established, with several newer biomarkers being recently identified and applied clinically. This emergence of the diverse range of biomarkers for CAD provides insight into the widely varied pathophysiology of this disease. However, with the increased numbers of biomarkers, there is a critical need for a rapid standardized multiplex measurement platform for diagnosis of CAD and patient-personalized medical treatment
interventions. We developed an LC/ESI-MRM-MS assay to measure 100 putative proteins and identified a list of 16 potential proteins associated with CAD (Table 2) that together can stratify subjects with potential risk of CAD (cross-validated AUC of 75%). Combining the proteomics-based MRM classifier with the traditional clinical information about CAD risk factors results in an enhanced classifier to determine the occurrence of CAD among patients at-risk in a non-invasive and timely manner (cross-validated AUC of 84%).

Samples from this study were analyzed after a long-term period of storage. The stability of some proteins in these samples was analyzed performing multiple freeze thaw cycles and comparing the resulting protein levels with those from freshly collected plasma [24]. Other studies also have demonstrated the long-term stability of some of the proteins in our study, including CRP [25], SHBG [26] [27], and PON1 [28]. To complement this analysis, we compared clinical measurements of CRP from fresh plasma of 188 patients in this study [14-16] with our MRM-MS measurement from long-term frozen plasma. The estimated robust correlation between the clinical and MRM-MS measures was, on average, 0.96 (see Figure A6 in the Supplementary Material). Considering the intrinsic differences between these technologies, we interpret these results as a favorable indication of sample stability for this inflammatory protein marker.

Coronary atherosclerotic plaque formation and disruption with consequent platelet aggregation and thrombosis are the two most important mechanisms that lead to the acute ischemic conditions of CAD [29]. Inflammation is essential to the initiation, development, and progression of atherosclerosis, and therefore it should be no surprise that a number of CAD biomarkers are involved in this inflammatory process. The association of increased serum levels of acute-phase proteins with the progression of atherosclerosis and occurrence of CAD has been
well documented [30-32]. In particular, C reactive protein (CRP) is an acute phase protein of hepatic origin that has been previously associated with increased risk of CAD [31, 32]. CRP increases in response to factors released by macrophages, adipocytes and T cells, and activates the complement cascade thereby promoting inflammation [33]. Complement C1q subcomponent subunit A (C1QA) initiates the complement cascade by binding to and activating C1r and C1s proenzymes into complement C1, the first component of the complement system. Recent studies have reported that serum C1QA can interact with adiponectin and increased C1q/adiponectin ratio correlates with atherosclerosis severity and CAD pathogenesis [34-36]. Complement C3 plays a central role in the complement cascade and can lead to the initiation of both the classical and alternate complement pathways. This multiple complement pathway activation leads to increased signal amplification and activation of the membrane attack complex (MAC), which is involved in cell lysis and apoptosis. In the case of complement activation on vascular smooth muscle cells, this can lead also to cell contraction, increased vascular permeability, and leukocyte chemoattraction. Elevated complement C3 levels are associated with the atherosclerotic process and arterial calcification, especially in women [37, 38]. Both complement components C1QA and C3 were elevated in CAD+ subjects and significantly associated with CAD in our study (Table 2 and Figure 1, un-adjusted p-value equal to 0.03 and 0.04, respectively).

Apolipoprotein L1 (ApoL1) is a minor apolipoprotein component of high-density lipoprotein (HDL) and is found in many tissues including the vascular epithelium. The exact role of ApoL1 is still being elucidated, but it is thought that ApoL1 may play a role in the inflammatory response, as proinflammatory cytokines increase its expression [39]. Similarly, apolipoprotein CII (ApoCII), another apolipoprotein, but a component of very low density lipoproteins (VLDL) and chylomicrons, is associated with a higher risk of atherosclerosis,
although the exact mechanism is still being researched [40]. Therefore, both ApoL1 and ApoCII interact with lipoproteins, such as HDL, LDL, and VLDL, and are involved in the CAD pathogenic process through mechanisms that are still being researched [41]. In our study, CRP and both ApoL1 and ApoCII were significantly elevated in the case group (CAD+) relative to the control group (CAD-) in our study (Table 2 and Figure 1, un-adjusted p-values of 0.01, 0.03, and 0.03, respectively) indicating the association of these proteins with CAD. CD5 antigen-like (CD5L) is a secreted protein mainly expressed by macrophages in inflamed tissues that acts as a key regulator of lipids and is responsible for progression of the atherosclerotic process in CAD [42]. CD5L is a potent inhibitor of apoptosis in macrophages and promotes macrophage survival from the apoptotic effects of oxidized lipids [42]. CD5L was, on average, more abundant in CAD+ subjects relative to CAD- subjects in our study, reflecting its association with inflammatory process in CAD (Table 2 and Figure 1, un-adjusted p-value of 0.02).

Paraoxonases are a family of mammalian enzymes that have important anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial, and organophosphate-hydrolyzing properties [43, 44]. Paraoxonase 1 (PON1) is primarily synthesized in the liver and is transported into the bloodstream where it binds with high-density lipoprotein (HDL). PON1 plays an important role in preventing the oxidation of low-density lipoproteins (LDL), which is directly implicated in the development of atherosclerosis. PON1 polymorphisms and changes in biological activity can impact lipid metabolism, leading to the aggravation of atherosclerosis and increase the risk of a coronary event [45-47]. Furthermore, PON1 serum concentration is involved in a feedback loop and greatly influenced by inflammation and serum oxidized (ox)-LDL levels. In our study, serum PON1 was significantly associated with CAD (Table 2 and Figure 1, un-adjusted p-value of 0.03).
Coagulation factor X (F10) is the first member of the final common pathway for thrombosis and, when activated, converts large amounts of prothrombin (inactive form) into thrombin (active) on the surface of activated platelets. This process, known as the “thrombin burst”, is responsible for fibrin polymerization that leads to fibrin clot formation and thrombosis. Therefore, F10 is a critical positive mediator of thrombosis, and is the target of commonly used anti-coagulants in clinical practice, such as warfarin and heparin. Activated coagulation factor V (F5) can bind to activated platelets and act as a cofactor for activated F10, facilitating “thrombin burst”, fibrin clot formation, and thrombosis. Furthermore, fibronectin, an extracellular matrix glycoprotein, can bind to the fibrin clot and plays a key role in cell adhesion, growth, migration, and differentiation, thereby enhancing the role of macrophages and fibroblasts in fibrin clot stabilization and thrombosis [48]. In our analysis, F10 and F5, were significantly elevated in subjects with CAD (Table 2 and Figure 1, un-adjusted p-values of 0.01 and 0.04, respectively). In contrast, fibronectin levels were significantly decreased in case subjects, as compared to controls (Table 2 and Figure 1, un-adjusted p-value < 0.001). Although this process may be due to enhanced fibrinosis and the incorporation of soluble plasma fibrinogen into the insoluble blood clot during CAD, we have not detected significant changes of fibrinogen in this study. von Willebrand factor (vWF), a protein secreted by endothelial cells, is important in the formation and maintenance of a fibrin clot. Specifically, during thrombosis, it promotes adhesion of platelets to the fibrin clot by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complexes. Coagulation factor XIII (FXIIIa) can also covalently cross-link vWF to polymerizing fibrin and fibrin-bound VWF further recruits and activates platelets to support fibrin clot formation [49]. Though an exact mechanism has not been elucidated, both vWF and fibronectin are known to support the formation of the fibrin clot and
have been shown to be co-localized in the blood vessel endothelium during cardiovascular disease [50, 51]. High vWF levels are predictive of adverse cardiovascular outcomes [52] and, in agreement with these previous findings, vWF was elevated in our case subjects when compared to control subjects (Table 2 and Figure 1, un-adjusted p-value < 0.001).

Fibrinolysis is a process that breaks down and prevents fibrin clots, the end product of coagulation, from growing and becoming problematic [53]. Plasmin, the key effector for fibrinolysis, is inactivated by alpha 2-antiplasmin (A2AP) [54, 55]. Furthermore, A2AP has a key role in regulating cytokine signaling and phagocytosis activity during inflammation [56], both of which are implicated in the pathogenic process of CAD. Thus, the significantly elevated levels of A2AP in CAD+ subjects (Table 2 and Figure 1, un-adjusted p-value of 0.01) are not necessarily surprising.

Protein S is a vitamin K-dependent plasma glycoprotein synthesized by the endothelium and involved in the blood coagulation cascade. Protein S is partially homologous to other vitamin-K dependent proteins, including FX, and to plasma steroid hormone-binding proteins such as sex hormone-binding globulin (SHBG). Protein S is best characterized in its role in the anti-coagulation pathway, where it functions as a cofactor of protein C in the inactivation of coagulation factors, such as activated FV [57-59]. Specifically, activated FV is degraded by protein C, one of the principal physiological inhibitors of coagulation, which is activated by thrombin. In other words, thrombin limits its own activation in a negative feedback loop via the concentration levels of activated protein C. We also found a significantly higher level of protein S in the CAD+ group, relative to CAD-, in our cohort (Table 2 and Figure, un-adjusted p-value < 0.0001, respectively). The significantly elevated levels of pro-inflammatory markers are a strong
Sex hormone-binding globulin (SHBG) is a glycoprotein that is produced and secreted by the liver into the bloodstream where it binds sex steroids, including testosterone and estradiol. Testosterone and estradiol circulate in the bloodstream, bound mostly to SHBG, where these bound hormones remain functionally inactive. Thus, bioavailability of sex hormones is influenced by the level of SHBG. Furthermore, the proinflammatory mechanisms that are implicated in CAD pathogenesis through increased cytokine signaling and phagocytosis activity are known to also regulate SHBG activity [60]. Therefore, the cortisol/testosterone and cortisol/SHBG ratios are hypothesized to be strong predictors of atherosclerosis [61], and our results support the hypothesis that low SHBG is a strong predictor for CAD, with significant lower levels in the CAD+ group (Table 2 and Figure 1, un-adjusted p-value of 0.04).

Iron status is a modifiable property that has been implicated in a number of cardiovascular diseases, and higher iron status reduces CAD risk [62]. Specifically, both low hemoglobin and iron depletion are independently associated with CAD [63]. Transferrins are iron-binding transport proteins that are responsible for the transport of iron from absorption and heme degradation sites to storage and utilization sites. Significantly increased levels of transferrin can lead to low hemoglobin and iron depletion and may exacerbate CAD development. In our study, transferrin was shown to also be associated with CAD (Table 2 and Figure 1, un-adjusted p-value of 0.01). PON1 has important protective effects in cardiovascular diseases, including regulating cytokine signaling and phagocytosis [64, 65]. PON1 is also associated with regulating iron metabolism and maintaining proper iron homeostasis [66] and iron dysregulation has been implicated as a risk factor for CAD [67, 68]. As indicated previously,
in our study, serum PON1 was significantly associated with CAD (Table 2 and Figure 1, un-adjusted p-value of 0.03).

Most of our 16 discriminatively protein biomarkers are primarily involved in the two most important early mechanisms for CAD pathogenesis: (i) atherosclerotic plaque formation and (ii) thrombosis. Furthermore, we have uncovered other associated proteins that are indirectly involved in the pathogenic processes, such as in the regulation of cytokines and phagocytic cells, or interactions with lipoproteins, or in maintaining iron homeostasis. Thus, the identified panel can be used for a better stratification of at-risk CAD patients with evidence of a more thrombotic and/or pro-inflammatory extracellular environment. The translation of these markers to the clinic would still require an extensive external validation and a migration of the markers to a clinical assay [8].

Overall, the results of this study illustrate the potential of using an accurate and reproducible LC/ESI-MRM-MS assay to discover promising proteins that can be combined with usual clinical risk factor to enhance risk evaluation of CAD.

Acknowledgments

We thank the University of Victoria Genome BC Proteomics Centre for their expertise in conducting the LC/ESI-MRM-MS experiments, and in particular Carol Parker for their comments on this manuscript. This work was funded by the NCE Centre of Excellence for Commercialization and Research (McManus et al). The University of Victoria - Genome BC Proteomics Centre is funded by the Genome Canada and Genome British Columbia funds to (project codes 204PRO for operations and 214PRO for technology development). GAF was
funded by CIHR Project Grant PJT 148883. GCF is funded by an NSERC Discovery Grant. CHB is grateful for support from the Leading Edge Endowment Fund (LEEF). CHB is also grateful for support from the Segal McGill Chair in Molecular Oncology at McGill University (Montreal, Quebec, Canada), and for support from the Warren Y. Soper Charitable Trust and the Alvin Segal Family Foundation to the Jewish General Hospital (Montreal, Quebec, Canada).

CHB is the CSO of MRM Proteomics, Inc. All other authors have no financial/commercial conflicts of interests.
References

[34] Hong, E. S., Lim, C., Choi, H. Y., Ku, E. J., et al., The amount of C1q-adiponectin complex is higher in the serum and the complex localizes to perivascular areas of fat tissues and the intimal-medial layer of blood vessels of coronary artery disease patients. *Cardiovasc Diabetol* 2015, 14, 50.

Figure Legends

Figure 1. Boxplot plots of candidate biomarker proteins in the derived panel. Points represent the log-transformed (base 2) standardized protein levels.

Figure 2. Pairwise robust correlations between all peptides from the 16 identified candidate biomarker proteins. Peptide names are shown as row names (left axis). Protein acronyms for each proteotypic peptide are shown as the corresponding column name (bottom axis).

Figure 3. Receiver operating characteristic curves of the (a) proteomics-MRM, (b) the clinical, and (c) the ensemble classifiers estimated by 100 runs 5-fold cross-validations (grey lines). The blue curve represents the average of the 100 ROC curves estimated within each cross-validation run. The horizontal line represents the sensitivity of the classifier using a probability cut-off of 0.5.
Table 1. Description of the discovery cohort.

<table>
<thead>
<tr>
<th></th>
<th>CAD- (n=45)</th>
<th>CAD+ (n=70)</th>
<th>un-adjusted p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous myocardial infarction, %</td>
<td>11.1</td>
<td>42.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>4.4</td>
<td>22.9</td>
<td>0.02</td>
</tr>
<tr>
<td>Previous angioplasty, %</td>
<td>2.2</td>
<td>15.7</td>
<td>0.05</td>
</tr>
<tr>
<td>Previous bypass, %</td>
<td>0.0</td>
<td>11.4</td>
<td>0.05</td>
</tr>
<tr>
<td>Family history of CAD, %</td>
<td>46.6</td>
<td>60.0</td>
<td>0.23</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>40.0</td>
<td>41.4</td>
<td>0.99</td>
</tr>
<tr>
<td>Smoking, %</td>
<td>55.6</td>
<td>73.9</td>
<td>0.07</td>
</tr>
<tr>
<td>Apolipoprotein B, g/L</td>
<td>0.9 ± 0.2</td>
<td>1.0 ± 0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>26.6 ± 3.2</td>
<td>28.1 ± 3.8</td>
<td>0.03</td>
</tr>
<tr>
<td>TC:HDL cholesterol ratio</td>
<td>5.1 ± 1.6</td>
<td>5.8 ± 1.7</td>
<td>0.05</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>87.2 ± 29.1</td>
<td>97.7 ± 23.1</td>
<td>0.03</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>3.3 ± 0.9</td>
<td>3.5 ± 1.0</td>
<td>0.24</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.0 ± 0.2</td>
<td>0.9 ± 0.2</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 2. List of panel proteins with significant differential abundance in subjects with (CAD+) and without (CAD-) angiographic evidence of CAD. Average, standard deviations (SD) and fold changes are computed based on the raw relative responses of each selected peptide.

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Gene Symbol</th>
<th>Accession Number</th>
<th>Average (SD) for CAD+</th>
<th>Average (SD) for CAD-</th>
<th>Fold Change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibronectin</td>
<td>FN1</td>
<td>P02751</td>
<td>0.120 (0.079)</td>
<td>0.190 (0.097)</td>
<td>1.548</td>
<td><0.001</td>
</tr>
<tr>
<td>Protein S</td>
<td>PROS1</td>
<td>P07225</td>
<td>0.052 (0.012)</td>
<td>0.043 (0.010)</td>
<td>1.202</td>
<td><0.001</td>
</tr>
<tr>
<td>von Willebrand Factor</td>
<td>vWF</td>
<td>P04275</td>
<td>0.002 (0.003)</td>
<td>0.005 (0.005)</td>
<td>2.085</td>
<td>0.001</td>
</tr>
<tr>
<td>Inter alpha trypsin inhibitor heavy chain H1</td>
<td>ITIH1</td>
<td>P19827</td>
<td>0.250 (0.047)</td>
<td>0.220 (0.040)</td>
<td>1.129</td>
<td>0.001</td>
</tr>
<tr>
<td>Coagulation Factor X</td>
<td>F10</td>
<td>P00742</td>
<td>0.030 (0.006)</td>
<td>0.027 (0.006)</td>
<td>1.120</td>
<td>0.009</td>
</tr>
<tr>
<td>Alpha 2 antiplasmin</td>
<td>A2AP</td>
<td>P08697</td>
<td>0.040 (0.011)</td>
<td>0.035 (0.008)</td>
<td>1.157</td>
<td>0.010</td>
</tr>
<tr>
<td>Transferrin</td>
<td>TF</td>
<td>P02787</td>
<td>0.260 (0.053)</td>
<td>0.240 (0.043)</td>
<td>1.098</td>
<td>0.013</td>
</tr>
<tr>
<td>C reactive protein CRP</td>
<td>CRP</td>
<td>P02741</td>
<td>0.008 (0.013)</td>
<td>0.007 (0.016)</td>
<td>1.268</td>
<td>0.014</td>
</tr>
<tr>
<td>CD5 antigen-like</td>
<td>CD5L</td>
<td>O43866</td>
<td>0.180 (0.100)</td>
<td>0.140 (0.053)</td>
<td>1.297</td>
<td>0.016</td>
</tr>
<tr>
<td>Complement C1 Q subcomponent subunit A</td>
<td>C1QA</td>
<td>P02745</td>
<td>0.003 (0.001)</td>
<td>0.002 (0.001)</td>
<td>1.183</td>
<td>0.025</td>
</tr>
<tr>
<td>Apolipoprotein L1</td>
<td>APOL1</td>
<td>O14791</td>
<td>0.043 (0.012)</td>
<td>0.038 (0.013)</td>
<td>1.128</td>
<td>0.026</td>
</tr>
<tr>
<td>Serum paraoxonase 1</td>
<td>PON1</td>
<td>P27169</td>
<td>0.130 (0.040)</td>
<td>0.120 (0.031)</td>
<td>1.147</td>
<td>0.031</td>
</tr>
<tr>
<td>Apolipoprotein C II</td>
<td>APOC2</td>
<td>P02655</td>
<td>0.088 (0.045)</td>
<td>0.071 (0.046)</td>
<td>1.225</td>
<td>0.035</td>
</tr>
<tr>
<td>Complement C3</td>
<td>C3</td>
<td>P01024</td>
<td>0.048 (0.012)</td>
<td>0.044 (0.010)</td>
<td>1.106</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Coagulation Factor V</td>
<td>F5</td>
<td>P12259</td>
<td>0.005</td>
<td>0.004</td>
<td>1.118</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex hormone binding globulin</td>
<td>SHBG</td>
<td>P04278</td>
<td>0.009</td>
<td>0.011</td>
<td>1.237</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Boxplot plots of candidate biomarker proteins in the derived panel. Points represent the log-transformed (base 2) standardized protein levels.
Figure 2. Pairwise robust correlations between all peptides from the 16 identified candidate biomarker proteins. Peptide names are shown as row names (left axis). Protein acronyms for each proteotypic peptide are shown as the corresponding column name (bottom axis).

203x152mm (300 x 300 DPI)
Figure 3. Receiver operating characteristic curves of the (a) proteomics-MRM, (b) the clinical, and (c) the ensemble classifiers estimated by 100 runs 5-fold cross-validations (grey lines). The blue curve represents the average of the 100 ROC curves estimated within each cross-validation run. The horizontal line represents the sensitivity of the classifier using a probability cut-off of 0.5.

101x203mm (300 x 300 DPI)
Reviewer: 1

Comments to the Author

The central hypothesis of the presented manuscript is that novel protein in plasma can serve as predictors of cardiovascular risk. The authors apply targeted proteomics panel of 100 proteins developed at U Victoria to plasma from two sets – one, a discovery, model building case-control cohort of 45 people with clinical CVD and 70 of people without clinical CVD (defined by angiography). The discovery set is also used to test the model by applying a form of leave-one-out five-fold cross-validation approach. The model comprising of 16 proteins (most upregulated with CVD) is then applied to a separate cohort of subjects (n=87) of which most died of CVD in the follow up to blood collection (n=73). The model is also compared to a model built using common risk factors and the authors show that the proteomics predictor performs about the same as common risk predictor and when combined, the risk prediction is improved. There are several problems with the presented study –

We thank the reviewer for the insightful comments and suggestions, which generated an improved presentation of our work and a more robust analysis of our data. Please find a point-to-point response to your comments.

1. The model is developed with a population where cases already have clinical CVD and is not properly validated in a population which includes both healthy and people with CVD.

Both training and test set are from a cohort of subjects who underwent coronary angiography for suspected coronary artery disease (CAD). We recognize that this study does not involve a group of healthy controls. Thus, our goal is to enhanced risk stratification and diagnosis of CAD among an at-risk population of patients.

To clarify this important point raised by the reviewer, we have reviewed the last sentence of the Introduction (page 6) to:

“The results of this study are a solid first step toward the use of multiplexed LC/ESI-MRM-MS assays in proteomic discovery studies, and for the development of a robust and accurate tool to determine who among an at-risk population has developed clinical CAD.”

We also reviewed the following sentences of the Discussion:

Page 19: “We developed an LC/ESI-MRM-MS assay to measure 100 putative proteins and identified a list of 16 potential proteins associated with CAD (Table 2) that together can stratify subjects with potential risk of CAD (cross-validated AUC of 75%). Combining the proteomics-based MRM classifier with the traditional clinical information about CAD risk factors results in an enhanced classifier to determine the occurrence of CAD among patients at-risk in a non-invasive and timely manner (cross-validated AUC of 84%).”

Page 25: “The results of this study illustrate the potential of using an accurate and reproducible LC/ESI-MRM-MS assay to discover promising proteins that can be used for risk evaluation of CAD.”
Similar statements throughout the paper emphasize that the aim of our study is to evaluate patients with suspected CAD (e.g., last 2 sentences of the Statement of clinical relevance section, conclusions of the Abstract, and second and third paragraphs of the Introduction).

As noted by the reviewer, the independent test set is mainly composed of subjects with CAD that died during the followed-up period. Thus, we’ve also evaluated the proposed classifier using cross-validation, which creates a valid test set from the discovery cohort of patients. In a 5-fold cross-validation, the discovery cohort is divided into 5 sets (folds). Each of these sets is left out as a test set and the remaining 4 sets are combined to form a training set. Importantly, the test set (fold left out) is not used to identify potential markers or build the classifier but only to estimate the performance of the resulting model. The advantage of using a cross-validation is that the population of the test set used resembles that of the training set without overestimating the performance of the classifier. We now highlight and clarify this problem in the second paragraph of page 14 in the Materials and Methods-Statistical Analysis section.

Noteworthy, similar performance results were obtained from both validations: the cross-validated sensitivity and specificity are 77% and 60%, respectively; the estimated sensitivity and specificity in the independent test set are 74% and 55%, respectively.

2. It is not clear how old the samples are – indication is at least 6 years, but cohort description suggests it could be as long as 25 years. Were all samples of the same age? Is there data suggesting sample stability?

As indicated in Materials and Methods, the analyzed cohort is comprised of men and women who were referred to two major teaching hospitals in Vancouver for selective coronary angiography between 1992 and 1995. Blood samples were collected just before the angiography was performed.

Plasma lipid levels, apolipoprotein B and C-reactive protein (CRP) levels were immediately measured at time of sample collection (see references [14-16] of the manuscript). Blood samples were centrifuged immediately and aliquoted into smaller vials and frozen in –70 °C until analysis. In their paper from the Annals of Human Genetics (2012, Vol 76, pages 435–447), Dr. Hill’s group analyzed the stability of the biomarker proteins identified in their study performing multiple freeze thaw cycles and comparing the resulting protein levels with those from freshly collected plasma. Although the plasma samples analyzed by Dr. Hill in 2012 are the same as those used in our study, the protein panels are not. Thus, we performed additional tests and experiments to address this important concern.

For 188 patients in our study, we compared clinical measurements of CRP from fresh plasma with our MRM-MS measurement from long-term frozen plasma. We calculated robust correlations resistant to outlying points (Rousseeuw PJ., J Am Stat Assoc 1984, 79:871 – 880) for the two CRP peptides available in our MRM-MS. The estimated correlation between the clinical and MRM-MS measures was, on average, 0.96 (see Figure A6 below and in the Supplementary Material). Considering the intrinsic differences between these technologies, we interpret these results as a favorable indication of sample stability for this inflammatory protein marker. Results
of this analysis are included in the second paragraph of the Discussion (page 19) and in the Supplementary Material. Apolipoprotein B was not measured in our assay.

Figure A6: CRP stability after long-term storage. Correlation between of CRP MRM-MS measurements based on long-term stored samples and ELISA measurements based on fresh plasma samples. MCD robust correlations [1] and sample sizes are shown in the top-left corner.

Unfortunately, there were not samples left from the original study. Thus, we could not measure the proteins in our panel in the same set of samples after 7 extra years of storage. However, in our effort to study this issue, we run an additional experiment using a set of 34 plasma samples measured by Biomarkers in Transplantation (BiT) in January 2012 from a cohort of patients that received a heart transplant. The BiT MRM-MS assay contained peptides from 9 out of the 16 proteins in our panel. For each sample, a separate aliquot of the same EDTA tube was re-analyzed to study the stability samples after 6 years of storage.
The robust correlations were above 0.9 for 6 out of the 9 analyzed proteins, about 0.6 for Alpha 2 antiplasmin and Complement C1QA, and 0.4 for von Willebrand Factor (see plot above). Since a new set of peptide standards was used in the current analysis, we conclude that most of the proteins analyzed in BiT samples remain stable after a long-term storage. Since samples in this analysis were different from those of our study, we have not included these results in the manuscript. However, we are happy to add these results if the reviewer finds them relevant.

We have also complemented our analysis with a literature review on this important topic. There are several studies that evaluate long term stability of a number of the proteins, including several of the ones investigated in our study. For example, C-reactive protein (CRP) (PMID: 24373927, 23516433, 15070788) and Sex hormone-binding globulin (SHBG) (PMID: 17270355, 19290843) have been shown to be stable under long-term storage stability conditions up to 12 years. A study investigating Paraoxonase 1 (PON1) long-term storage at -70°C did not reveal any issues with protein stability (PMID: 22584062). Coagulation factors, such as prothrombin (PMID: 23411127), have also been shown to be stable at long-term storage conditions. However, the long term storage stability of some of proteins, such as alpha-2 antiplasmin, apolipoproteins CII and L1, and coagulation factors V and X, in our study, have not been sufficiently investigated in the published scientific literature. We have added this information in the Discussion section as well (page 19).

3. There is much higher prevalence of Diabetes (T1 or T2?) in the CVD group – could the model be in part due to diabetes and not CVD?

We agree with the reviewer that the prevalence of Diabetes is higher in the CAD group. Thus, the identified panel may be differentiating samples with and without Diabetes, instead of samples with and without CAD. To address this point and remove a potential confounding effect of Diabetes, we used the classifier developed in this study to classify only those samples without Diabetes (n=97 from the discovery set). Results demonstrate that even after removing a potential confounding effect of Diabetes, our classifier can still differentiate between samples with and without CAD (AUCs of 0.76, 0.73, and 0.83 for the clinical, MRM, and ensemble classifiers, respectively). Thus, the performances of the three classifiers remain almost unchanged on this subset of patients without Diabetes.

We added a brief comment related to this concern in the Results: Cohort Clinical Characteristics Section (last paragraph of page 15) and in the Supplementary Material.

4. There is confusion about what is the response of individual proteins measured. Methods indicate 6-point calibration, however all data is presented as log transformed standardized relative response (peak area of native/peak area of stable isotope standard) not a peptide/protein concentration as would be expected from calibrated data. There is even statement, ”Calculated Concentration is reported in pmol/µL of plasma or µM” (which is not true).

We understand that our description was confusing since we have not used calculated concentrations but log transformed relative responses in the analysis. We have now clarified that relative responses were used in the analysis and removed unnecessary information from the Materials and Methods section (page 12).
5. **It is not clear which “classical risk factors” were used in the reference classifier. Some of the are clearly collinear. How were they combined into the classifier since some are continuous variables and some binary?**

Predictors are combined using a logistic model. As in a linear regression, predictors of a logistic model can be both continuous and/or binary. Thus, a logistic model can be used to combine both types of explanatory variables in a univariate linear score that explains the logarithm of the subject’s odd of having angiography evidence of CAV. We have included a better description of a logistic model in Materials and Methods-Statistical Analysis (page 13) and in the Supplementary Material.

As expected, some of the explanatory variables in our logistic models are collinear. However, the expected prediction performance of the classifiers is not affected by this problem (a proof can be found in the book by Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York, NY, USA, Springer; 2001). A simulation study can be also conducted to prove this point. Collinearity among the explanatory variables of generalized linear models inflates the standard errors of the estimated coefficients, and thus affects their statistical significance in joint models, but does not affect the prediction performance of the estimated classifier. We have also added a reference that explains the difference between significance and prediction (see new reference 20 in the manuscript: Shmueli G. (2010) To explain or to predict? Statistical science 25:289-310).

6. **There are concerns about the method itself – for majority of proteins the measured peptides correlate poorly (median correlation over the 66 detected/measureable proteins is only 0.82). The selection of the peptide representing protein was made based on highest signal, that however, does not guarantee that the selected peptide is true representation of the protein abundance and completely different result could be obtained should a different peptide was chosen to represent protein abundance. This is demonstrated by selection of a peptide for LPA which resides in the kringle IV type 2 domain of LPA and is thus present in the sequence in multiple copies and is highly variable due to genetic determination of LPA sequence. This is prime example of the need to verify results from targeted proteomics by second peptide.**

We agree with the reviewer that using the peptide with higher signal to represent the protein does not guarantee true representation of protein abundance. While there is not an established consensus on how to integrate the information from different peptides measured for the same protein, it is important to note that our results are robust to using the average level among measured peptides instead. The panel of identified proteins is slightly smaller when MEAN values are used, with 4 proteins dropped: Coagulation Factor V, Coagulation Factor X, Protein S, and Sex Hormone Binding Globulin. However, the performance of the three classifiers (clinical, MRM-MS and ensemble), are very similar regardless of using the peptide with the higher signal (MAX) or using the average abundance (MEAN) to represent each protein (Table A2 added to the Supplementary Material). Similarly, in the test set, the sensitivity and specificity of the ensemble classifier changes from 0.86 and 0.36, respectively, using MAX to 0.78 and 0.45 using MEAN.
Table A2: Performance of our 3 classifiers based on clinical risk factors (Clinical), MRM-MS proteins (MRM-MS), and their ensemble (Ensemble) using both the average level among all available peptides per protein (MEAN) and the levels of the peptide with highest values in most samples (MAX).

<table>
<thead>
<tr>
<th>Cross-validation</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical</td>
<td>MRM-MS</td>
<td>Ensemble</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.76</td>
<td>0.72</td>
<td>0.83</td>
</tr>
<tr>
<td>MAX</td>
<td>0.76</td>
<td>0.75</td>
<td>0.84</td>
</tr>
</tbody>
</table>

To better understand the slight differences observed between both analyses, we compared the MAX versus the MEAN abundance of the proteins in the panel in Figure A1 (below and in Supplementary Material).

Figure A1: MAX versus the MEAN levels of the proteins in the panel. Black line represents the 45° line where both values are equal.

As expected, there is a strong correlation between both measurements. However, the MEAN value can be highly affected by peptides that cannot be properly measured by the assay shrinking...
the measurements of some proteins. Thus, we prefer to keep the analysis based on the MAX measurements. We clearly indicate which peptide was used in the analysis, thus results can be validated with an independent assay or methodology. Given that some researchers may prefer to use the average abundance, we now included these results and discussion in the Supplementary Material and a reference to this analysis in the Materials and Methods section.

We agree with the reviewers that the peptide GTYSSTTVTGR of Apolipoprotein A should have not been included in the analysis. We updated all the results in the manuscript excluding this peptide.

7. Data for vWF show very unusual pattern with a large group in both healthy and CVD groups at identical value of -1 SD – is this because protein was not measurable in these people?

The peptide used for vWF (ILAGPAGDSNVVK) was not measurable in 28% of the patients. Our original approach uses half of the minimum value observed throughout the assay to impute all non-measurable values (NA) in the data. A second peptide of this protein (IGWPNAPIIQDFETLPR) has even more missing values (41%). Both peptides were missing in 18% of the samples. Importantly, missing values in this protein are not significantly associated with CAD status (Fisher Exact test p-value of 0.1). Thus, we do not interpret the absence or presence of this protein as a sign of CAD.

To reduce the repetition of a single value in multiple samples, we have changed our imputation approach. For any protein containing missing values, if another peptide is available and measured for that protein, then its value is used to impute the missing value. Otherwise, half of the minimum value observed throughout the assay is used to impute. We clarified this in the Materials and Methods section (page 13) and updated all results of the paper accordingly.

8. There is a lack of detail on how the predictive model was developed. Statement, “Protein levels of significant proteins (p-values < 0.05) were combined into a protein classifier probability score using logistic regression” is not sufficient – does this mean linear combination with CVD status as a binary outcome? Has any optimization been performed to test whether some of the proteins are collinear or do not contribute to the prediction? Since the p-values used to include proteins into the predictor were not corrected for multiple hypothesis testing (the 100 proteins measured or 66 actually used in the analysis) and since most of them would not survive this correction, some are likely false positive and likely to fall out from the predictor.

As mentioned previously in point 4, a logistic regression model is a linear combination of the explanatory variables (e.g., protein levels) to explain the logarithm of the odd of success (CAD+ in our case). While collinear explanatory variables affect the standard errors of their coefficients and thus their statistical significance, it does not affect the expected prediction performance of the model.

The p-values from the two-sample t-tests in our study were not adjusted for multiple hypothesis testing. While the statistical significance of each marker is relevant to identify potential markers, it is important to note that the prediction performance of individual markers can improve when
all are combined in the logistic model (for a full discussion on this topic see Shmueli G. (2010) To explain or to predict? Statistical science 25:289-310).

For example, the following plot compares the levels of two proteins in case (red points) and control (blue points) samples (toy data). While these proteins cannot discriminate the case and control groups in isolation (see vertical and horizontal overlap of samples from both groups), the diagonal line (linear combination of both proteins) can clearly separate the groups.

Since our study is focused on the joint contribution of proteins and clinical features to predict CAD classes, we have not adjusted the p-values of the univariate tests.

We have now improved our explanation of the logistic regression and the significance criteria used in the Materials and Methods-Statistical Analysis section (page 13-14) and in the Supplementary Material. We have also clarified the use of un-adjusted p-values throught the Discussion.

Finally, we have now included a plot illustrating the marginal contribution of each protein to classify samples of the test set. Proteins are added one at a time in order of the univariate p-values (Figure A2 of the Supplementary Material).

Figure A2: Marginal contribution of identified proteins. Sensitivity and specificity values estimated from the test set as proteins are added one at a time to the panel in order of their univariate test p-values (see Table 2 of main text). For example, Panel 2 contains the top-2 proteins (Fibronectin and Protein S) while Panel 16 contains all 16 identified proteins.
9. In Discussion individual proteins should not be discussed as significant unless the p-values are still significant after multiple comparison correction. Statements like: “CRP and both ApoL1 and ApoCII were significantly elevated in the case group (CAD+) relative to the control group (CAD-) in our study (Table 2 and Figure 1, p-values of 0.01, 0.03, and 0.03, respectively)” are invalid since with none of these stated p-values would survive correction for 66 measurements.

As recognized by the reviewer, using a stringent univariate filter as that given by individual hypothesis tests with adjusted p-values can control the discovery of false (or weak) individual markers. However, at the same time one may miss the discovery of more subtle but key markers that when combined with others can discriminate patients with CAD from patients without angiographic CAD.

As we explained in the previous point, the primary objective of our study is to predict the status of CAD in patients at risk using a classifier based on multiple proteins. Thus, we have not changed the criteria used to select potential markers. The statistical term “significant” depends on the threshold considered in the analysis, which is stated in the Materials and Methods-Statistical Analysis section (page 13) and in the second paragraph of page 16 in Results. We have further clarified this issue explaining why we have not adjusted the p-values in this study (see Materials and Methods-Statistical Analysis) and adding the word “un-adjusted” when reporting p-values of individual proteins.

10. While the method description is detailed some important information is not included – i.e. number of concurrent transitions and minimal number of points across the chromatographic peak.

We have aimed for a minimum of 10 points across a peak and each peptide was measured with 3 transitions. We have now added this information in the Materials and Methods section and have attached a spreadsheet as Supplementary Material to report the qualifier and quantifier transitions.

11. It would be beneficial to report variability encountered in the cross-validation and in the test sets. Some of it may be depicted in Figure 3, but the figure is of very low resolution and essentially not legible except the axes and curves. Error bars should be presented along both axes.

As noted by the reviewer, Figure 3 illustrates the receiver operating characteristic curves (ROC) from all cross-validation runs (in light grey). We have improved the resolution of our figures. We hope that the new versions can be easily interpreted. In addition, to better illustrate the variability and distribution of the AUCs computed with cross-validation, we have added boxplots for the AUCs of the 3 classifiers in Figure A5 of the Supplementary Material (and below for your reference).

For the test set, there is no variation in the calculated AUC, sensitivity and specificity since each sample is classified only once and used to compute these performance measures. However, we note that Figure A4 in the Supplementary Material (called A1 in the original version) illustrates the variation of the predicted probabilities for all samples using boxplots.
Figure A5. Distribution of the area under the receiving operating curve (AUC). Boxplots of the calculated AUCs from 100 runs of 5-fold cross-validations (see Materials and Methods for more details) for each classifier.
Reviewer: 2

Comments to the Author

The authors used LC/ESI-MRM-MS measured 242 peptides from 100 plasma proteins and try to find potential biomarkers of the coronary artery disease (CAD). The results showed 16 out of the 100 proteins associated with CAD when comparing the protein concentration in 70 CAD patients and 45 control patients. When combined the 16 proteins with clinical measurement, the method showed AUC=0.84. This has been confirmed using a different set of subjects (n=87).

The experiment was well designed and the conclusions seem solid, but a lot of data were not shown or not well described, which are necessary to support the results and conclusions.

We thank the reviewer for the deep and useful comments and suggestions, which generated an improved analysis with robust results and a better discussion of our work. Please find a point-to-point response to your comments.

1. **Were all plasma samples collected between 1992-1995?**

Yes, as indicated in Materials and Methods, the analyzed cohort is comprised of men and women who were referred to two major teaching hospitals in Vancouver for selective coronary angiography between 1992 and 1995. Blood samples were collected in that time frame just before the angiography was performed. We refer the reviewer to our response to point 2 raised by Reviewer 1, which contains more details about our new experiment and analyses of sample stability. We have added a brief discussion of this topic in the Discussion (page 19) and in the Supplementary Material (see Figure A6 in this point 2 of Reviewer 1 and in the Supplementary Material).

2. **Transition list is missing. Also need to state which is quantifier and which is qualifier.**

We have aimed for a minimum of 10 points across a peak and each peptide was measured with 3 transitions. We have now added this information in the Materials and Methods section and have attached a spreadsheet as Supplementary Material to report the qualifier and quantifier transitions.

3. **Only measured 127/242 peptides, which passed QC and present in >50% samples. What's the reason for the low percentage of usable data?**

Peptides were excluded from the analysis if they were not measurable in more than 50% of the samples or if they perform poorly in a chromatographic sense (i.e., poor peak shape) leading to high variation during integration and computation of its response. Missing values may be due to peptides present at a level below the LLOQ of the assays. Poor LC performance can be attributed to degradation, incomplete digestion or release, among other reasons.

To obtain robust and reproducible results, we based our analysis on reliable data to demonstrate the potential of using LC/ESI-MRM-MS to discover promising proteins that combined with usual clinical risk factor to enhance risk evaluation of CAD.
We have improved the description of our quality control (QC) criteria in the Materials and Methods section. In addition, in Table A1, we have separated the peptides that were successfully measured by our assay from those that failed our QC criteria as a reference for future studies.

4. Why the peptides correlation varies? Why choose the most intense peptides? If they are not correlate, how to make sure the most intense peptide represents the protein level?

We agree with the reviewer that using the peptide with higher signal to represent the protein does not guarantee true representation of protein abundance. While there is not an established consensus on how to integrate the information from different peptides measured for the same protein, it is important to note that our results are robust to using the average level among measured peptides instead. We refer the reviewer to our response to point 6 raised by Reviewer 1, which contains full details about our analysis based on average peptide levels. Since the mean can be highly affected by peptides that cannot be properly measured by the assay, we prefer to keep the analysis based on the MAX measurements. We clearly indicate which peptide was used in the analysis, thus results can be validated with an independent assay or methodology. Given that some researchers may prefer to use the average abundance, we now included these results in the Supplementary Material (see Figure A1 and Table A2) and added a reference to this analysis in the Materials and Methods section (page 13).

5. "Calculated Concentration is reported in pmol/ul of plasma" where are these data?

We understand that our description was confusing since we have not used calculated concentrations but log transformed relative ratios in the analysis. We have now clarified that relative responses were used in the analysis and removed unnecessary information from the Materials and Methods section (see page 12).

6. What are the traditional markers currently used in the clinic? Which were used in generating the AUC?

Traditional blood parameters that are used in the clinic are typically restricted to lipoprotein levels, such as total cholesterol, LDL cholesterol, HDL cholesterol, non-HDL cholesterol, triglycerides, and apolipoprotein B. In some patients, lipoprotein (a) may also be measured, as well as apolipoprotein A-I levels and the apoE genotype. Certain ratios may also be used such as LDL/HDL and ApoB/ApoA1 ratios to further supplement clinical CAD assessment (PMID: 24982904). General markers of health including fasting glucose, HbA1c, Creatinine, GFR, ALT, and TSH, may routinely be included in the clinical assessment of CAD. CRP is not routinely used because of its lack of specificity to vascular disease, as it is more of a systematic marker of inflammation.

Our clinical classifier includes all the variables that were measured at time of sample collection in these patients and are reported in Table 1 of the manuscript. The aim of the clinical classifier is to combine variables that are relevant in the assessment of CAD into a unique score and compare its performance to that of the MRM-MS model.
7. Please deposit raw files and skyline files into public repository.

Raw data files have been submitted to PeptideAtlas under the title “Multiplexed LC/ESI-MRM-MS-based Assay for Identification of Coronary Artery Disease Biomarkers in Human Plasma”. We used Mass Hunter to process this data, which is proprietary. Thus, we did not upload any skyline file.

8. Please discuss how to “reduce a significant burden on healthcare system” by using this method? Is it easy to implement this method to clinical labs?

All of the biomarkers in Table 1 are routinely measured in the clinic. We show combining these traditional markers with the identified proteins can lead to a better stratification of at-risk patients. While the markers currently used in the clinic are only evident once a certain CAD disease threshold has been reached, the proteomic markers are involved in the early pathogenic processes and can thus help to identify earlier patients with evidence of a more thrombotic and/or pro-inflammatory extracellular environment. By this means, the implementation of this panel in the clinic would reduce significant burden on the health care system. The translation of these markers to the clinic would still require an extensive external validation and a migration of the markers to a clinical assay. We have included this discussion in the second to last paragraph of the manuscript and have softened the conclusive remarks by removing the phrase “reduce a significant burden on healthcare system”.

9. Table 2, add average concentration +/- SD and fold change between 2 groups.

We have reviewed Table 2 to include the additional information requested by the reviewer. More specifically, Table 2 now include average and standard deviations of relative responses of both groups, as well as their fold change. Although the statistical analysis has been performed on log-2 transformed and standardized data (mentioned in the Materials and Methods section), we consider that the raw relative responses summaries for each group can be of interest for the readers and thus reported those in Table 2.

10. Figure 1, vWF showed 2 separate population, why?

The peptide used for vWF (ILAGPAGDSNVVK) was not measurable in 28% of the patients. Our original approach uses half of the minimum value observed throughout the assay to impute all non-measurable values (NA) in the data. A second peptide of this protein (IGWPNAPILIQDFETLPR) has even more missing values (41%). Both peptides were missing in 18% of the samples. Importantly, missing values in this protein are not significantly associated with CAD status (Fisher Exact test p-value of 0.1). Thus, we do not interpret the absence or presence of this protein as a sign of CAD.

To reduce the repetition of a single value in multiple samples, we have changed our imputation approach. For any protein containing missing values, if another peptide is available and measured for that protein, then its value is used to impute the missing value. Otherwise, half of the minimum value observed throughout the assay is used to impute. We clarified this in the Materials and Methods section (page 13) and updated all results of the paper accordingly.
11. *Figure 2*. Fibronectin & vWF highly correlate but not with any others, why? It's better to run a clustering analysis to see which are clustered together.

Some studies have shown the co-localization of Fibronectin and vWF in the blood vessel endothelium during cardiovascular injury or disease (PMID: 8533129, 3878055). In fact, both vWF and Fibronectin are known to support the formation of the fibrin clot but it is not known if they work together or independently. Fibronectin can be considered to initiate the first wave of hemostasis and is integrated into fibrin even before platelet accumulation (PMID: 25180602, 25180602). As the coagulation cascade continues, coagulation factor XIII (FXIIIa) covalently cross-links vWF to the polymerizing fibrin and fibrin-bound VWF further recruits and activates platelets to support fibrin clot formation (PMID: 25381443).

We have added this information in the Discussion section and included a new figure A3 illustrating the cluster analysis suggested by the reviewer in the Supplementary Material.

Figure A3. Cluster analysis of the panel proteins.

12. *Table A1*. What is the unit of the values? If they are the L/H ratio, authors should add ug/ul plasma as the SIS are in different concentration so the ratio will have no clinical relevant. Is it average (Q1 Q3) or median (Q1 Q3)? how to select the peptides as the representative of each protein? For apo(a), GTYSTTVTGR is in Kringle repeat region and should not be used as representative of protein-level. Add protein accession number

We have now edited Table A1 to clarify and expand the information about the proteins used in our analysis. In this table we report the relative responses of the analyzed peptides, thus there are no units associated. In the reviewed table, we have included the accession numbers of all
proteins, clarified its caption, and re-order peptides to distinguish better those used in the analysis from those that could not be successfully measured by the developed assay.

We agree with the reviewers that the peptide GTYSTTVTGR of Apolipoprotein A should have not been included in the analysis. We updated all the results in the manuscript excluding this peptide.

13. In abstract, experimental design, “The assay was used to measure 242 stable isotope labeled peptide”, it also measures the 242 native peptides.

We have now added this missing piece of our design. We thank the reviewer for pointing this out.

14. “Agilent 6490 TQ (QQQ) LC/MS”, spell triple quadrupole, LC/MS should be MS

We have corrected our spelling and description in the manuscript.

15. The LC run time is 36 min. is it possible to reduce the run time in a final method?

It is entirely possible to shorten the method so that the proposed methodology becomes more appealing to a clinical lab. However, the data validation in this study was performed using a 36-min method gradient as stated in the Materials and Methods section. Additional validation results would be required to transition into a new gradient. We have added in the sentence in the Discussion indicating that additional validations are required to migrate the identified markers to a clinical assay (page 25).

16. “Endogenous targets whose response is below the lower limit of quantification will have calculated concentrations with low accuracies.” If it’s below LLOQ, is it still worth to report?

To control the quality of our data, we have examined the accuracies of the standards points and the limit of quantification of the endogenous targets. Peptides with overall low accuracy and/or values below the limit of quantitation in more than 50% of the samples were eliminated from this analysis. We have improved the description of our quality control (QC) criteria in the Materials and Methods section (pages 12-13). In addition, we have improved the content of Table A1 to describe the measured peptides levels better.

17. “…enhanced fibrinosis and the incorporation of soluble plasma fibrinogen into the insoluble blood clot…” did you see fibrinogen change?

This is a good observation. We have not detected significant changes of fibrinogen in this study. We have clarified this statement in the Discussion (page 22).

18. “…indirectly involved in the pathogenic process, such as in the regulation of cytokines and phagocytic cells” Which proteins are involved?

To clarify which proteins are involved in the pathogenic process, we have added the following sentences throughout the Discussion section:
Page 21: “Therefore, both ApoL1 and ApoCII interact with lipoproteins, such as HDL, LDL, and VLDL, and are involved in the CAD pathogenic process through mechanisms that are still being researched (Ding, 2014).”

Second paragraph of page 23: “Furthermore, A2AP has a key role in regulating cytokine signaling and phagocytosis activity during inflammation (Kager, 2013), both of which are implicated in the pathogenic process of CAD.”

Page 24: “Sex hormone-binding globulin (SHBG) is a glycoprotein that is produced and secreted by the liver into the bloodstream where it binds sex steroids, including testosterone and estradiol.” and “Furthermore, the proinflammatory mechanisms that are implicated in CAD pathogenesis through increased cytokine signaling and phagocytosis activity are known to also regulate SHBG activity (Simo, 2015).”

Last paragraph of page 24: “PON1 has important protective effects in cardiovascular diseases, including regulating cytokine signaling and phagocytosis (Martinelli, 2013; Litvinov, 2012). PON1 is also associated with regulating iron metabolism and maintaining proper iron homeostasis (Okuturlar, 2016) and iron dysregulation has been implicated as a risk factor for CAD (Spasojevic-Kalimanovska, 2014; Bagheri, 2013).”